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Gasoline in arson fires

• Annual average of 52,260 arson fires were reported (2014-2018)
• Caused 400 civilian deaths, 950 civilian injuries, and $815 million in direct property

damage

• Gasoline is one of the most commonly-used ignitable liquids in arson fires
➢ Easy to obtain and transport

• Standard test method for identifying gasoline is ASTM E1618-19
➢ Visual comparison of chromatograms
➢ Extracted ion profiling
➢ Target compound analysis
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National Fire Protection Association (NFPA), Intentional Structure Fires. https://www.nfpa.org//-/media/Files/News-and-Research/Fire-statistics-and-reports/US-Fire-Problem/Fire-causes/osintentional.pdf, 2021.
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Deep learning (1/2)

• Convolutional neural network (CNN)
➢ A neural network with multiple layers
➢ Automatically extract features
➢ Unstructured data (images)

Sarigul, M., Ozyildirim, B. M., & Avci, M. (2019). Differential convolutional neural network. Neural Networks, 116, 279–287. https://doi.org/10.1016/j.neunet.2019.04.025
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Deep learning (2/2)

• Capable of extract 
complex features

• Higher classification 
performance

• Predictive modeling
• Superior capability to 

classify images
• Wide applications in 

diagnosing diseases

Advantages Disadvantages

• Requires large-scale data 
collection

• High computational cost

• Transfer learning

• Can deep learning (transfer learning) be applied in gasoline
detection if GC/MS data are presented in images?

U. R. Acharya, O. Faust, Y. Hagiwara, J. H. Tan, H. Adeli, Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals, Computers in Biology and Medicine. 100 (2017) 270–278. https://doi.org/10.1016/j.compbiomed.2017.09.017
S. S. Yadav, S. M. Jadhav, Deep convolutional neural network based medical image classification for disease diagnosis, Journal of Big Data. 6(2019) https://doi.org/10.1186/s40537-019-0276-2
M. A. Morid, A. Borjali, G. Del Fiol, A scoping review of transfer learning research on medical image analysis using ImageNet. Computers in Biology and Medicine. 128 (2020) 104115. https://doi.org/10.1016/j.compbiomed.2020.104115
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Sample collection and preparation (1/3)

• Five brands of gasoline were collected in Huntsville, Texas (Brand A, B, C, D, and E)
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• Serial dilution of the gasoline samples (n=8 dilution series in triplicates)

Analyte concentration

N1 100 μg gasoline/20-mL HS vial

N2 50 μg gasoline/20-mL HS vial

N3 25 μg gasoline/20-mL HS vial

N4 12.5 μg gasoline/20-mL HS vial

N5 6.3 μg gasoline/20-mL HS vial

N6 3.1 μg gasoline/20-mL HS vial

N7 1.6 μg gasoline/20-mL HS vial

N8 0.8 μg gasoline/20-mL HS vial

N9 0.4 μg gasoline/20-mL HS vial

Sample collection and preparation (2/3)
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• Simulated fire debris samples
➢ Nylon carpet
➢ Direct heat method

Sample collection and preparation (3/3)
Analyte concentration

FD1 100 μg gasoline + 0.25 g substrate/
20-mL HS vial

FD2 50 μg gasoline+ 0.25 g substrate/
20-mL HS vial

FD3 25 μg gasoline+ 0.25 g substrate/
20-mL HS vial

FD4 12.5 μg gasoline+ 0.25 g substrate/
20-mL HS vial

FD5 6.3 μg gasoline+ 0.25 g substrate/
20-mL HS vial

FD6 3.1 μg gasoline+ 0.25 g substrate/
20-mL HS vial

FD7 1.6 μg gasoline+ 0.25 g substrate/
20-mL HS vial

FD8 0.8 μg gasoline+ 0.25 g substrate/
20-mL HS vial

FD9 0.4 μg gasoline+ 0.25 g substrate/
20-mL HS vial

National Center for Forensic Science, https://ilrc.ucf.edu/substrate/criteria.php
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Instrumental analysis

GC Oven Program Steps Condition

GC oven initial temperature 40 °C

Hold time 5 min

Rate #1 10 °C/min

Oven temperature #1 150 °C

Rate #2 30 °C/min

Oven temperature #2 300 °C

HHS-SPME Steps Condition

Pre-Fiber Conditioning Temperature 250 °C

Pre-Fiber Conditioning Time 60 s

Pre-Incubation Time 300 s

Incubation Temperature 80 °C

Extraction Time 120 s

Desorb to GC injection port

Desorption Time 120 s

Post-Fiber Conditioning Temperature 250 °C

Post-Fiber Conditioning Time 600 s

GC Runtime 1200 s

• HS-SPME-GC/MS analysis
100 μm PDMS SPME fiber Agilent 7890B/

5977A
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Image transformation

• GC/MS data were transformed into 3 types of images

m/z 55-156
Retention time 3-12 min

Alkane m/z 57,71,85
Cycloalkane and alkene m/z 55,69
Alkylbenzenes m/z 91,105,106,119, 120,134
Indanes m/z 117,118,132
Alkylnaphthalenes m/z 128,142,156

(Gasoline brand A, N1)

*Note: All axes and labels of the images were removed during transfer learning.
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Transfer learning (1/2)

• Preparation of data sets

Number of GC/MS data acquired Total number of transformed images

Training 

Gasoline 
present

Neat samples

Brand A 63

315 390
• 80% for training
• 20% for validation

Brand B 63

Brand C 63

Brand D 63

Brand E 63

Gasoline 
absent

Burned carpet 75 75

Verification

Gasoline 
present

Neat samples 90
180

195
Simulated fire debris samples 90

Gasoline 
absent

Burned carpet 15 15

585
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Transfer learning (2/2)

• Re-train GoogLeNet for gasoline detection 

Training

Verification
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Predictions on the verification data set (1/5)

• Training: validation accuracy

Extracted ion heatmap Heatmap TIC

100% 100% 100%

• Verification:

Neat samples Simulated fire debris samples
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Predictions on the verification data set (2/5)

• Comparison of prediction probability for simulated fire debris samples
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Predictions on the verification data set (3/5)

• Comparison of correct predictions for simulated fire debris samples
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Predictions on the verification data set (4/5)

• Comparison of the predictions on the simulated fire debris samples at 1.6 - 100 μg 
gasoline sample/20-mL HS vial 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.4-100 µg/20-mL HS vial  1.6-100 µg/20-mL HS vial

Accuracy

Extracted ion heatmap Heatmap TIC

0.79

0.96



16

Predictions on the verification data set (5/5)

• Comparison of classification performance between the extracted ion heatmap and 
four ML models

Neat samples
Simulated fire debris samples

(1.6 - 100 μg gasoline sample/20-mL HS vial )
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Conclusions

Experimental outcome
• TIC and heatmaps provided characteristic features of gasoline chemical profiles for 

transfer learning 
• High performance for neat samples; limitation on fire debris samples
• Classification performance:

➢ Heatmap > TIC
➢ Extracted ion heatmap > all ion range heatmap
➢ Extracted ion heatmap > ML models

Intelligent workflow
• No dependency on manual feature extraction
• Achieved high accuracy without large-scale data collection
• More capable of discriminating mixtures compared to other ML models
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